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Abstract 

This article deals with assembly line balancing problem and with possibility of 
using genetic algorithm as an optimizing tool in balancing process. There is 
briefly described line balancing problem and the main goals of balancing. Also it 
is shown here how genetic algorithm work and what are the advantages of this 
tool.  

 
 
1. INTRODUCTION 
 

Assembly line production is widely used and is one of the basic principles in production 
systems. It is the most commonly used method in a mass production environment. The main 
objective of assembly systems is to increase the efficiency of the line by maximizing the ratio 
between throughput and cost. Assembly lines are special flow-line production systems of a 
number of stations (n) arranged along a conveyor system. The assembled product takes its 
shape gradually starting with one part (the base part), with the remaining parts being attached 
at the various stations which are visited by the product. 

Assembly line design involves the design of products, processes and plant layout before the 
construction of the line itself. These different modules interact at the different stages of 
assembly line design. The product analysis proposes a product design review based on the 
classical design for assembly rules and precedence constraints between tasks. The operating 
modes and techniques module proposes an assembly technique and the possible modes 
(manual, automated, robotic) for each task. The line layout module assigns tasks to a set of 
stations and decides on the position of stations and the resource on the plant floor (Figure 1). 

The design of efficient assembly workshops is a problem of considerable industrial 
importance. In general, for simple products a single linear assembly line with possibility 
parallel station can do the job. For complex products, the assembly system is mostly 
decomposed into sub-systems with their own cycle time, reliability, and stations requirements. 
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Figure 1 Methodology and information flow of the assembly line design 
 
According to number of product variants produced by assembly line, we can divide them 

into two basic groups: 
 

Single product assembly line - the single product line is used to produce only one product. If 
dynamic phenomena are neglected, the workload of all stations remains constant over time. 
Mixed production assembly line - a family of products is a set of distinguished products 
(variants), whose main functions are preferably similar. A typical example is a family of cars 
with different options: some of them will have a sunroof, some will have ABS, etc. 

 
2. LINE BALANCING PROBLEM 

 
One of the greatest problems of assembly line design and optimization, is balancing 

problem. A line balancing problem is defined by a line along which products (vehicles) go 
through and are progressively assembled. The assembly operations are performed by 
workstations spread along the line. The objective is to assign operations to workstations in 
order to minimize, for instance the number of required workstations (workers), or we can say 
that objective is to balance the line (Figure 2). This is called a simple assembly line balancing 
problem. If the line is not well balanced the idle times on workstations rise. Sum of the 
workstations unbalances presents unbalance of whole assembly line Z. The basic constraints 
are cycle time and precedence constraints. 
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Figure 2 Line balance 

 
If the sequence of operations and operation times are given, only number of workstations 

and tact time can be influenced. Goal of the solving line balancing problem can be: 
a) minimize number of workstations n if tact time is given (cycle time is constatnt), 
b) minimize length of tact time for given number of workstations, or generally, 
c) minimize number of idle time units of whole line (maximize effectivity and 

minimize unbalance), when it is possible to select number of workstations and 
tact time. 

 
Data inscription 

 
Sequence of the operations and their technological relations can be described in several 

ways. First one is using table. 
 
Tab. 1 Data table 
 

Operation number i Operation time ti Numbers of directly precedent operations 

1 6 - 
2 2 1 
3 5 1 
4 7 1 
5 1 1 
6 2 2 
7 3 3,4,5 
8 6 6 
9 5 7 

10 5 8 
11 4 9,1 

Sum 46  
  

a) Unbalanced line b) Balanced line

tim
e 

tim
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workstation workstation 

tact time

tact time 
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This data can be written into precedence graph, where corners of the graph represent 
operations and flowlines represent relationship between them. Operation number is written 
within the circle and operation time is shown next to the circle. Data from table 1 are written 
into precedence graph (figure 3).   

 

 
 

Figure 3 Precedence diagram 
 

Technological relations can be expressed also by precedence matrices. In the matrices 
element ij equals 1, if operation i is direct precedent of operation j, in the other case it equals 0. 
 
 
Tab. 2 Precedence matrices 
 

                j 
 i 1 2 3 4 5 6 7 8 9 10 11 

1  1 1 1 1       
2      1      
3       1     
4       1     
5       1     
6        1    
7         1   
8          1  
9           1 

10           1 
11           1 

 
Basic relations 
 

In general following marks and relations are used: 
 
i  -  operation index, i = 1, 2, 3, ..., n, 
n  -  number of operations,    
ti(tk)  -  operating time of i-th (k-th) operation, i.e. number of time units   

needed for i-th (k-th) operation execution, 
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-  sum of all operating times of all operations (product labor content), 
 
j  -  workstation (workplace) index, j = 1, 2, 3, ..., m, 
m  -  number of workstations, 
A  -  set of all operations, 
Aj(Al)  -  set of operations assigned to j-th (l-th) workstation, 
t(Aj)  -  sum of operating times of operations assigned to j-th workstation,  
    
 
 
c, c1, c2,  ..., cn  -  manufacturing tact time, i.e. time spent by product on the each  

workstation, expressed in time units compatible with operation time 
units, 

ipk  -  sequence relation, it means that i-th operation must precede k-th  
   operation in the manufacturing process, 
Z  -  objective function, i.e. number of idle time units on j-th workstation 
   (unbalance), 
Zj  -  number of idle time units on j-th workstation, 
E  -  line efficiency. 
  

Formulations for conditions and goals:  
 

U
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If ipk and i ∈  Aj and k ∈  Al, then j ≤ l      (4) 
 
minimize 
 

 
             (5) 
 
 

      Condition (1) provides that all operations will be assigned to any workstation, and 
condition (2) provides that none operation will be assigned to more workstations at the same 
time. Both conditions provide clear and entire assignment of all operations on line 
workstations. Condition (3) provides, that sum of operation times of operations assigned to 
workstations, won`t exceed tact time and thanks to condition (4) technologic sequence will be 
obseved. 

Each assignment which fulfils this four conditions is called feasible solution and solution 
satisfying also conditions (5) is called optimal solution. Minimizing condition (5) minimal sum 
of idle times is provided.  
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According to condition (3) sum of operating time of assigned operations to each 
workstation is less or equal to tact time and because of this objective function can be defined as 
final assignment effectivity.  
 
  E = sum of operation times / real time spent on line = T / mc              (6) 
  

Objective function Z, express optimal solution by absolute value of difference between real 
time spent by product on the line and labor content. 
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             (8) 
 
First of all we will deal with number of workstations. Minimum number of workstations is 

one. But this solution is trivial and it is about piece production, not about line production. 
Maximal number of workstations can’t be higher than number of operations executed on 
product ( m = n ). In this case effectivity of line would be dependent on operation time 
numbers, because minimal tact time value is limited by the longest operation time duration. 
 

If the longest operation time duration is tmax 
 
tmax = max ti (i = 1,2,...,n)        (9) 
 
then relation for maximal number of workstations is: 
         
 
              (10) 
 
 

Square bracket presents integral result.  
Term (10) has only supply character, because some tasks exist where higher number of 

workstations than counted number, leads to higher effectivity of the line. For example line with 
four operations executed in series (figure 4) has tmax=5, T=15, then mmax=15/5=3. 
 

 
 

Figure 4 Precedence graph 
For three workstations will be necessary to assign two operations on one workstation. Because 
of sequence and tact time restrictions the most suitable will be to combine second and third, or 
third and fourth operation. In the both cases tact time presents seven time units. 
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Effectivity is: 
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If there is four workstations m = mmax + 1, tact time c = 5 is enough and final effectivity is: 
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(This effectivity is higher.) 

 
The best result could be reached if there are two workstations and two operations. Then c = 

8 and effectivity is: 
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Let integral number mmax, designated by relation (10), gives maximal number of 

workstations. Real number of workstations must be natural number and must fulfill following 
constrain: 
 
          (11) 
 

When line balancing problem is solved, first of all tact time should be estimated for each 
number of workstations. It is needed to find optimal assignment with minimal tact time and to 
find equivavlent effectivity. Solution with the highest effectivity is considered as a final 
solution. 

Generally we are not interested in all possible solutions, but mostly in solutions with  
higher number of workstations or in situation when the number of workstation is firmly given. 
Or if tact time is given, we are looking for corresponding minimal number of workstations.  . 

Effort to solve line balancing problem has resulted into using well known methods for line 
balancing problems, but also new very powerful optimizing tool genetic algorithm has 
appeared.   
 
 
3. GENETIC ALGORITHMS (GA) 
 

GAs are a stochastic search techniques based on the mechanism of natural selection and 
natural evolution. Biological inspired aspects of this algorithm can be seen in following basic 
steps [2]:  

1. GA can operate on any data type (representation) which determines the bounds of the 
search space. It is desirable that the representation can only encode feasible solutions, 
so that the objective function (fitness) measures only optimality and not feasibility. 

nmm ≤≤≤ max1
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2. The initial population is created during an initialization phase and it is often generated 
at random. Generally, some knowledge is used by the GA to start the search from 
promising regions of the search space. 

3. Every member of the population is then evaluated and a fitness value is given 
according to how well it fulfils the objectives. If there is no clear way to compare the 
quality of different solutions, then there can be no clear way for the GA to allocate 
more offspring in the fitter solutions. 

4. The GA favours individuals with a higher overall fitness when picking “parents” from 
the population. The fitness function allows the evaluation  of solutions. Then, these 
scores are used to determine which individuals will participate in creating the new 
population. 

5. Based on the fitness values, the GA selects candidate solutions and combines 
(crossover) the best traits of the parents to produce superior children. 

6. A small part of the population is mutated. Single existing individuals are modified to 
produce a single new one. It is more likely to produce harmful or even destructive 
changes than beneficial ones. 

7. Natural selection ensures that the weakest creatures die, or at least do not reproduce as 
successfully as the stronger ones. In the same way, a population is maintained with the 
fittest solutions being favoured for reproduction. New generations are formed by 
selecting some parents and offspring and rejecting the less-fit ones. 

8. A generation is a population at a particular iteration of the loop. This iterative process 
(selection, crossover. etc.) continues until the specified number of generations is 
passed, or an acceptable solution has emerged. 

  
3.1 Standard GA 
 

Standard GA written into pseudo-code is shown in the table:  
 

Table 3 GA pseudo-code 
 

t := 0  
Initialize G(0) choose initial population 

Evaluate G(0) evaluate the fitness of each individual in the 
population 

do while not Done  
t := t + 1  
Select G(t) from G(t-1) make natural selection 
Crossover G(t) apply crossover  
Mutate G(t) apply mutation 
Evaluate G(0) evaluate 

Replace G(t-1) with G(t) replace worst ranked part of population 
with offspring 

loop until termination 
 

In the block of initialization, generations counter is released t=0 and initial population is 
generated G(0), usually consisting of randomly created members. For each of them, in the 
block of evaluation, its feasibility is calculated. After testing fulfillment of fitness function, are 
in the block of selection choosed members from population G(t) dedicated for reproduction.  
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From them, in the block of offspring generation, new members are created using genetic 
operators (usually crossover and mutation. In the block of evaluation is fitness value given to 
each offspring. Block of replace realizes creating of new generation G(t+1) usually from 
offspring, but sometimes also from generation members G(t). This cycle continues till the 
successful test in the block fulfillment of fitness function. Whole this algorithm is shown as 
flow process diagram on the figure 2.   
 

 
 
 

Fig.2 Flow process diagram of standard GA 
 
3.2 Representation - encoding 
 

The first step in designing a GA for a particular problem is to devise a suitable 
representation. For instance, it is quite natural to represent an n-dimensional vector as a string 
of n values (genes), while it is difficult to represent a graph without introducing extra 
information. Other problem we have to solve when we start to work with GA is encoding of 
chromosomes. Encoding very depends on the problem. So if form (parameters) of searched 
solution is encoded into chromosomes, in the world of computers it is usually represented as a 
string, whose attributes can be: 
 

Binary encoding  
 

Binary encoding is the most common, mainly because first works about GA used this type 
of encoding. In binary encoding every chromosome is a string of bits, 0 or 1.  

Example of chromosomes with binary encoding: 

INITIALISATION

EVALUATION

REPARATION

EVALUATION

OFFSPRING 
GENERATION

SELECTION

FULFILMENT OF 
FITNESS 

FUNCTION 
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Chromosome A 101100101100101011100101 
Chromosome B 111111100000110000011111 

 
Binary encoding gives many possible chromosomes even with a small number of alleles. 

On the other hand, this encoding is often not natural for many problems and sometimes 
corrections must be made after crossover and/or mutation. 
 

Permutation encoding 
 

Permutation encoding can be used in ordering problems, such as traveling salesman 
problem or task ordering problem. In permutation encoding, every chromosome is a string of 
numbers, which represents number in a sequence. 
Example of chromosomes with permutation encoding: 
 

Chromosome A 1  5  3  2  6  4  7  9  8 
Chromosome B 8  5  6  7  2  3  1  4  9 

 
 

Permutation encoding is only useful for ordering problems. Even for this problems for 
some types of crossover and mutation corrections must be made to leave the chromosome 
consistent. 
 

Value encoding 
 

Direct value encoding can be used in problems, where some complicated value, such as real 
numbers, are used. Use of binary encoding for this type of problems would be very difficult. In 
value encoding, every chromosome is a string of some values. Values can be anything 
connected to problem, form numbers, real numbers or chars to some complicated objects. 
Example of chromosomes with value encoding: 
 

Chromosome A 1.2324  5.3243  0.4556  2.3293  2.4545 
Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 
Chromosome C (back), (back), (right), (forward), (left) 

 
Value encoding is very good for some special problems. On the other hand, for this 

encoding is often necessary to develop some new crossover and mutation specific for the 
problem.  
 
 

Tree encoding 
 

Tree encoding is used mainly for evolving programs or expressions, for genetic 
programming.  
In tree encoding every chromosome is a tree of some objects, such as functions or commands 
in programming language.  
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Example of chromosomes with tree encoding: 

 
Chromosome A Chromosome B 

 
 

( +  x  ( /  5  y ) ) ( do_until  step  wall ) 
 
 

Tree encoding is good for evolving programs. Programming language LISP is often used to 
this, because programs in it are represented in this form and can be easily parsed as a tree, so 
the crossover and mutation can be done relatively easily.  

Length of a string can be: 
• fixed (typical for strings 1. – 3.) 
• variable (comes from character of values type 4) 
 
3.3 Feasibility 
 

GAs may employ four basic strategies to deal with infeasible solutions: rejection, repair, 
modifying the genetic operator, and assigning penalties. The rejection strategy simply discards 
all infeasible individuals, while the repairing strategy attempts to create only feasible solutions. 
For some problems, genetic operators can be modified so that they create only feasible 
solutions. Finally, penalty functions can be used when infeasible solutions can be recombined 
to form feasible ones (figure 3) 
 

 
 

Figure 3 Feasibility of solutions 
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Coding space Solution space

Illegal 

Feasible

Feasible area
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3.4 Selection 
 
During each successive generation, a proportion of the existing population is selected to 

breed a new generation. Individual solutions are selected through a fitness-based process, 
where fitter solutions (as measured by a fitness function) are typically more likely to be 
selected. Certain selection methods rate the fitness of each solution and preferentially select the 
best solutions. Other methods rate only a random sample of the population, as this process may 
be very time-consuming. 

Most functions are stochastic and designed so that a small proportion of less fit solutions 
are selected. This helps keep the diversity of the population large, preventing premature 
convergence on poor solutions. Popular and well-studied selection methods include roulette 
wheel selection and tournament selection. 

 
In roulette wheel selection (fitness proportionate selection), as in all selection methods, 

the fitness function assigns a fitness to possible solutions or chromosomes. This fitness level is 
used to associate a probability of selection with each individual chromosome. If fi is the fitness 
of individual i in the population, its probability of being selected is (12) 

 

∑
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     (12) 

 
where N is the number of individuals in the population. While candidate solutions with a 
higher fitness will be less likely to be eliminated, there is still a chance that they may be. 
Contrast this with a less sophisticated selection algorithm, such as truncation selection, which 
will eliminate a fixed percentage of the weakest candidates. With fitness proportionate 
selection there is a chance some weaker solutions may survive the selection process; this is an 
advantage, as though a solution may be weak, it may include some component which could 
prove useful following the recombination process. 

The analogy to a roulette wheel can be envisaged by imagining a roulette wheel in which 
each candidate solution represents a pocket on the wheel; the size of the pockets are 
proportionate to the probability of selection of the solution. Selecting N chromosomes from the 
population is equivalent to playing N games on the roulette wheel, as each candidate is drawn 
independently. 

 

 
 

Figure 4 Example of the selection of a single individual 
 

A B C D E F G 

0 F Total fitness = F

r∈(0,F)
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Tournament selection runs a "tournament" among a few individuals chosen at random 
from the population and selects the winner (the one with the best fitness) for crossover. 

Selection pressure can be easily adjusted by changing the tournament size. If the 
tournament size is larger, weak individuals have a smaller chance to be selected. 

 
Tournament selection pseudo code: 
 
choose k (the tournament size) individuals from the population at random 
choose the best individual from pool/tournament with probability p 
choose the second best individual with probability p*(1-p) 
choose the third best individual with probability p*((1-p)^2) 
 
and so on... 
Deterministic tournament selection selects the best individual (when p=1) in any 

tournament. A 1-way tournament (k=1) selection is equivalent to random selection. The chosen 
individual can be removed from the population that the selection is made from if desired, 
otherwise individuals can be selected more than once for the next generation. 

Tournament selection has several benefits: it is efficient to code, works on parallel 
architectures and allows the selection pressure to be easily adjusted. 
 
3.5 Genetic operators 
 

Generally it exist three types of genetic operators: 
 
1. asexual (mutation) – are applied on one parent, adding new genetic information. 
2. sexual (crossover) – are applied on two parents, properly combining their genetic 

material. 
3. panmictic (more than two parents) – are applied on more than two parents, also 

properly combining parents genetic material. 
 
Each of this operators is applied with specific probability, typical values are 0,001 for 

mutation (pm) and 0,6 for crossover (pc). If operator hasn`t been applied then individual usually 
„survives“ without changes.  

The change of chromosome caused by one of the operators depends on representation. 
 

Mutation 
 
The classic example of a mutation operator involves a probability that an arbitrary bit in a 

genetic sequence will be changed from its original state. A common method of implementing 
the mutation operator involves generating a random variable for each bit in a sequence. This 
random variable tells whether or not a particular bit will be modified. 

The purpose of mutation in GAs is to allow the algorithm to avoid local minima by 
preventing the population of chromosomes from becoming too similar to each other, thus 
slowing or even stopping evolution. This reasoning also explains the fact that most GA systems 
avoid only taking the fittest of the population in generating the next but rather a random (or 
semi-random) selection with a weighting toward those that are fitter. 
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Each bit mutates with probability pm and it can be also 1/l , where l is length of string. 
 
chromosome of individual  individual after mutation 
0111001010    0101001010 
 

Crossover 
 
Essentially can be n-pointed (most frequently n = 1 or 2) or uniform.  
 

• onepoint crossover (n = 1), point of crossover is randomly selected, i.e. number from 
interval <1, l-1> and in that strings of two individuals are crossed (in the case, that it is 
ruled out, the crossover is applied according given probability):  

 
chromosomes of parents  chromosomes of offspring 
011|1001010    0110011101 
001|0011101    0011001010 
 

• doublepoint crossover (n = 2), 
 
chromosomes of parents  chromosomes of offspring 
011|1001|010    0110011010 
001|0011|101    0011001101 
 

• uniform – mask is generated and according to it strings are crossed. Probability of 
generating 0 or 1 in the mask is usually 0,5, but on principle can be different. (Crossing is 
average in l/2 points.) 

 
mask 
0110100110 
 
chromosomes of parents  chromosomes of offspring 
0 - 0111001010   0110111011 
1 - 0010011101   0011001100 
 

Panmictic operators 
 
This operators are used rarely. In principle it is crossover genetic material of several 

parents: 
• scanning crossover - n parents, 1 offspring, i-th offsprings bit is defined by reading (scan) 

i-th bits of parents and by voting or by probability is defined value for offspring, pc = 1 
• diagonal crossover - n parents, n offspring, n crossover points. (If n = 2 then it is onepoint 

crossover.) 
 
chromosomes of parents (n=3)  chromosomes of offspring 
01|1100|1010    0110011001 
00|1001|1101    0011011010 
10|1101|1001    1011001101 
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3.6 Forming new generation 
 

Population size can be changed in general (usually is not changed). By forming new 
generation it has to be defined from which individuals it is going to be formed - P(t+1), and it 
can be selected from individuals in old population - P(t) and from population of offspring P"(t): 

 
P(t+1) ⊂ P(t) ∪ P"(t),  and  |P(t)| = µ(t), |P"(t)| = λ(t) 

 
Two extremes and combination are possible here: 
 

1) P(t+1) ⊂ P(t), absurdity, it is not used. 
 
2) P(t+1) ⊂ P"(t), generation substitution (whole generation is changed), 

a) if µ(t) = λ(t), P(t+1) = P"(t); 
b) if λ(t) > µ(t), it is needed to apply methods of selection therefore to reduce string. 

 
3) P(t+1) ⊂ P(t) ∪ P"(t), two strategies are available here: 

a) plus strategy, signed (µ+λ) and by selection method is number of individuals reduced;  
b) selection by generation gap – proportion of population, which passes to the other 

generation without changes. 
 
 
 
 
 
3.7 Ending condition 
 

In general three possibilities of ending condition exist: 
 
1. feasible solution has been achieved,  
2. population has converged,  
3. predetermined number of generations has been reached.  

 
In the first case is on purpose said “feasible” and not “optimal” solution, because optimum 

is not usually known, but forecast of respectable solution for the problem exists. This approach 
is consistent with biological analogy EA, so far from also natural evolution finds feasible and 
not optimal solutions. 

Gene has converged, when at least 90% individuals in population has the same value of this 
gene. Population has converged when all of the genes converge. 

 
3.8 Main advantages and disadvantages of GA 
 

Advantage of GAs is in their parallelism. GA is travelling in a search space with more 
individuals (and with genotype rather than phenotype) so they are less likely to get stuck in a 
local extreme like some other methods.  
They are also easy to implement. Once you have some GA, you just have to write new 
chromosome (just one object) to solve another problem. With the same encoding you just 
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change the fitness function and it is all. On the other hand, choosing encoding and fitness 
function can be difficult.  

Disadvantage of GAs is in their computational time. They can be slower than some other 
methods. But with todays computers it is not so big problem.  
 

To get an idea about problems solved by GA, here is a short list of some applications: 
• Nonlinear dynamical systems - predicting, data analysis  
• Designing neural networks, both architecture and weights  
• Robot trajectory  
• Evolving LISP programs (genetic programming)  
• Strategy planning  
• Finding shape of protein molecules  
• TSP and sequence scheduling  
• Functions for creating images  

 
Genetic algorithms has been used for difficult problems (such as NP-hard problems), for 

machine learning and also for evolving simple programs. They have been also used for some 
art, for evolving pictures and music.  
 
 
4. CONCLUSION 
 

Several approaches and algorithms in the line balancing problem exist. This approaches are 
usually suitable for simple line balancing problem but for more complicated balancing problem 
like mix-model production effective methods are missing. On this account it is necessary to 
handle with new methods and approaches to the line balancing process. One of very effective 
approaches is using of genetic algorithm. Optimization is the main field where genetic 
algorithm can be used, even though GA is not optimizer, doesn’t guarantee finding optimal 
solution. However using GA like optimization tool is not so usual in solving of manufacturing 
problems and because of this more attention should be paid on this optimizing technique. 
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